
DTIC FiLE COPYE CA vg CR 90.016

N I I July 1990JAn Investigation Conducted by:
Joseph A. Landers

ontract Report Department of Civil Engineering
University of California, Berkeley

N

N

A SOFTWARE DEVELOPMENT
SPECIFICATION FOR

NONLINEAR STRUCTURAL
\3 ANALYSIS

ABSTRACT This report describes a programming environment for structural
engineering computations. Offering many advantages over the current state of
technology in this area, the software system discussed here is highly flexible and
portable. In addition to carrying out sophisticated calculations efficiently on
today's engineering workstations, the environment can also exploit the power of
larger computers by linking tasks over a local area network. Furthermore, the
system is programmable and extensible. Finally, the software system may be in-
tegrated with existing programs such as finite element codes and mathematical
libraries.

DTIC
ELECTE

NAVAL CIVIL ENGINEERING LABORATORY PORT HUENEME CALIFORNIA 93043
Approved for public release; distribution is unlimited.

90 10 29 018

0" L

6C - -- 0N, aaN * O N0 W 0 ,
c LU

E u

C .2 I-.. o.4

I n-"-"~~ ~~ h 1IJJ IIIi'IU.i 1 :1116 1
.i~~iI iiibiiiIIiiIii ilili U~ i.~uiINII 11IIII II II III oil I..I 1111 . l I f 11111 oi l

1 8 ,7 54 13 12 1 1 Indws

IA-

E Me

nI 0 0

-~ 0-. wI CIw ;C 5 06 O 8 6 M2 8

CC

>t E ~ a 2

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704018

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect ot this
collection information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information and Reports, 1215 Jefferson Davis Highway.
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704.0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1990 Final; September 1987 thru October 1988

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A SOFTWARE DEVELOPMENT SPECIFICATION FOR PE - YR023.03.01.005
NONLINEAR STRUCTURAL ANALYSIS PR - RM33F60-A2-06-010

6. AUTHOR(S)

Joseph A. Landers

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSE(S) 8. PERFORMING ORGANIZATION

Department of Civil Engineering REPORT NUMBER

Division of Structural Engineering, Mechanics & Materials CR-90.016
University of California, Berkeley
Bef Tey, CA 94720

9. SPONSORNGIMONITORING AGENCY NAME(S) AND ADDRESSE(S) 10. SPONSORINGOMONITORING

Office of Naval Technology / Naval Civil Engineering AGENCY REPORTNUMBER

800 N. Quincy Street Laboratory
Arlington, VA 22217-5000 Port Hueneme, CA 93043-5003

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes a programming environment for stnctural engineering computations. Offering many
advantages over the current state of technology in this area, the software system discussed here is highly
flexible and portable. In addition to carrying out sophisticated calculations efficiently on today's engineer-
ing workstations, the environment can also exploit the power of larger computers by linking tasks over a local
area network. Furthermore, the system is programmable and extensible. Finally, the software system may
be integrated with existing programs such as finite element codes and mathematical libraries.

14. SUBJECTTERMS 15 NUMBEROF, AGES

Structural engineering, finite element analysis, software engineering, software development, 18
programming environment, interpreter, virtual machine 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Ptescibed by ANSI Std. 239.18
298-102

TABLE OF CONTENTS

Page

Abstract .. I

1I INTRODUCTION .. 1

2 HISTORICAL PERSPECTIVE .. 2

3 TERM INOLOGY .. 3

3.1 Interpreter .. 3
3.2 Language Design .. 4
3.3 Virtual M achine .. 4
3.4 Computer Networks .. 5
3.5 Dynam ic Binding .. 5

4 SYSTEM OVERVIEW .. 5

4.1 Virtual M achine .. 6
4.2 Interpreter .. 8
4.3 Structural Libraries .. 10

4.3.1 Geom etry .. 11
4.3.2 Property .. 11
4.3.3 Boundary .. 11
4.3.4 Loads .. 12
4.3.5 Analysis .. 12
4.3.6 Results .. 12

4.4 Application Libraries .. 12

5 EXAM PLES .. 13

6 SUM M ARY .. 14

7 ACKNOW LEDGM ENT .. 17 or

8 REFERENCES .. 17
Unanno u ,sued C]
Just if icat ion

'N Pq e / , Distrlbution/ s
Availability Code's

j ~At vail atid/op

iiit
Seca

A Software Development Specification

for Nonlinear Structural Analysis

Joseph A. Landers*

Abstract

This report describes a programming environment for structural engineering
computations. Offering many advantages over the current state of technology in
this area, the software system discussed here is highly flexible and portable. In
addition to carrying out sophisticated calculations efficiently on today's engi-
neering workstations, the environment can also exploit the power of larger
computers by linking tasks over a local area network. Furthermore, the system is
programmable and extensible. Finally, the software system may be integrated
with existing programs such as finite element codes and mathematical libraries.

1 INTRODUCTION Over the past several years, significant changes in
the computer market have created new computational

For many years computers have found applications opportunities for structural engineers. The availability
in the solution of structural engineering problems. The of low cost workstations equipped with powerful 32-bit
machines were, for the most part, utilized during the processors, high resolution graphic displays and inex-
analysis phase of a project. Often, the process con- pensive networking facilities can be expected to make
sisted of preparing an input file with a keypunch or a significant impact on the way in which engineering
generating information with a text editor. After pre- problems are formulated and solved. While the cost of
senting this data to a large and complex structural these computer systems has been dropping rapidly, the
analysis program in a batch environment, a substantial amount of raw processing power has been growing
volume of results would be returned to the engineer, almost geometrically. This has been especially true in
While making the most efficient use of limited com- the highly competitive market of general purpose com-
puter resources, this method of interaction was often puter systems. Even the large scale vector and parallel
tedious and prone to expensive errors. For example, processing machines have now become more acces-
one simple mistake due to a typing error might have sible to general engineering applications. Significantly,
significantly changed the meaning of the input which both hardware and software vendors are beginning to
could have negated hours of computation. The batch come to a consensus on standards for the tools they
oriented environment also made the development and provide. For example, there are computer networking
testing of new methodologies and algorithms very dif- standards for distributed file systems such as NFS [27],
ficult. Even when presented with an interactive text standards for inter-machine communication such as
editor, the construction and debugging of new concepts RPC [6], and standards for graphic display and interac-
and ideas often involved many iterations of the "edit, tion such as PHIGS [5], GKS [12] and the X Window
compile and debug" cycle. System [28]. There are even standards under develop-

*Department of Civil Engineering, Division of Structural Engineering, Mechanics and Materials,
University of California, Berkeley.

1

ment for operating syst'ems such as POSIX [11]. From Hence, the detailed account of the software system
a buyer's standpoint, this agreement among vendors has described here is more than just a theoreticai exercise,
helped to stabilize the computer workstation market it contains the recommendations based upon partially
and make the choices of a particular brand of hardware implementing the environment outlined in [14].
and software less importanL. Now, not only does the
buyer have a better basis for comparing different sys- 2 HISTORICAL PERSPECTIVE
tems, but the decision to purchase one vendor's equip-
ment over another's no longer entails a lifelong corn- Although this software system contains many unique
mitment. and innovative ideas in the context of structural engi-

Unfortunately, the advances in structural engineer- neering applications, these concepts are related to a
ing software have not kept pace with the rapid changes large body of previous work. The programming envi-
in the computer marketplace. Certainly, some applica- ronment described here not only builds upon the work
tions which were developed and used on computer done by others in the area of structural engineering, but
systems popular in the past have been modified to run it also draws upon the experience of those from outside
on today's workstations [19). Some software, devel- of this field, including such diverse areas of mathemat-
oped in the commercial sector, has been radically modified ics and computer science. Many valuable insights can
and enhanced to exploit the capabilities of the new be gained by studyi.ig how previous researchers have
hardware [7]. A few new packages have even been investigated and solved problems related to this topic.
written [25]. Yet, while these systems provide func- This programming environment owes much to three
tionality in the form of large and monolithic programs, earlier structural engineering software systems. The
little innovative software is available to the research first, the Integrated Civil Engineering System or ICES
and development community of structural engineers. [17], was a very ambitious collection of programs de-
Because this group relies upon advances in several veloped during the 1960's at the Massachusetts Institute
diverse areas such as mathematics, numerical analysis of Technology. ICES sought to provide a common set
and computer science as well as engineering, they of utilities not only for structural computations, but
require a computational environment that is responsive also for other areas of civil engineering as well. Con-
to changes in the state of the art. Since new techniques sidering the capabilities of the computer hardware avail-
and algorithms must be tested and debugged as they are able at that time, the system was quite sophisticated.
implemented, these researchers also require a system Applications used a crude keyword-oriented command
that provides a high degree of flexibility and interac- parser, and were able to extract and manipulate objects
tion. located in simple tables. Later, a commercial vendor

This report provides a somewhat detailed descrip- extended the functionality of the software to include
tion of a software environment for structural engineer- automated design facilities [22]. This vendor still
ing applications. While the system discussed here is supports a derivative of the work today. The second
primarily intended for the design and implementation program which had a major influence on the current
of new methodologies and techniques in finite element software system was the Problem Oriented Language
analysis, this software can also be extended and applied Organizer or POLO [18], developed during the 1970's
to commercial production situations as well. The origi- at the University of Illinois. A POLO system for the
nal intent of this report was to furnish a description of a analysis of engineering structures featured a high level
theoretical system, with the implementation coming at of interaction in the manipulation of finite element
some later time. However, during the course of prepar- models. The language was quite flexible and friendly.
ing this account, it became clear that at least a portion The third and final system to have influence on the
of the programming environment would prove of great design of the current environment was developed dur-
value in the author's current research in the develop- ing the 1980's by the architectural firm of Skidmore,
ment of a new finite element model for shell structures. Owings and Merrill in Chicago, Illinois. While private
Hence, while the software system described here has firms have always developed software to solve prob-
not been completely constructed, some major sections lems particular to their business, this system had many
of the environment have already been implemented at interesting attributes. The Structural Data Manage-
the University of California, Berkeley. Several of the ment System or SDMS [16], was a well developed
other ideas described here have, for the most part, environment for the design and analysis of tall build-
already been included in other systems outside of the ings. SDMS featured a high level of interaction in the
discipline of structural engineering [9, 13,29]. They form of both a fairly sophisticated command parser and
should not, therefore, represent a great deal of effort to graphic interface. The system also had the ability to
add to the already existing collection of computer code. share information with other application packages in-

2

cluding those oriented toward drafting and mechanical neers. It is this integration that is especially important
design. for engineers who work at the leading edge of computa-

Large, general purpose finite element codes have tional technology.
also had a significant influence on the overall design of
the current programming environment. The system
detailed in this report is not intended to replace these 3 TERMINOLOGY
codes, but rather it seeks to augment them by integrat-
ing their operation with new capabilities. From the In this section several technical terms and concepts
standpoint of the construction of a software system for which are frequently used throughout this report will be
structural engineering computations, these general pur- defined and discussed. The intent of this section is to
pose finite element codes are more interesting, not in provide a common reference point to these ideas so that
terms of the activities they support but rather for their the reader can have a better understanding of the under-
information requirements. Many popular general pur- lying structure and philosophy of the current program-
pose computer codes are available for finite element ming environment. Since it is assumed the reader is
analysis applications. Some of these include NAS- already familiar with the various technical terminology
TRAN [19], ANSYS [7] and SAP [36]. These codes in the realm of structural engineering, only a few new
provide a library of finite element models and have a concepts from field of computer science will be pre-
variety of analytical capabilities including both static sented. Note that while the definitions presented here
and dynamic response options and perhaps a capacity are quite general, they may or may not represent the
for investigating non-linear behavior, meanings in a more general computer science context.

A few research systems for mathematical and engi-
neering calculations provide some other interesting 3.1 Interpreter
perspectives. The CAL 78 [35] system is a matrix
interpreter specifically oriented towards solving struc- An interpreter provides a mechanism for translat-
tural engineering problems. The MATLAB [23] sys- ing input provided by the user into actions which are
tem provides some additional sophisticated functional- usually executed immediately by a machine. A com-
ity in a more general mathematical setting. A large piler, in contrast to an interpreter, generally stores this
general purpose symbolic manipulation system, translation in a file, possibly in some different internal
MACSYMA [21], has the ability to solve problems in form, for execution by a machine at a later time.
differential and integral calculus, along with many Interpreters allow new algorithms to be written
other capabilities. The research code FEAP [33] is a interactively. They can provide immediate feedback
hybrid between a general purpose finite element pro- on the implementation. While an interpreter may not
gram and a structural engineering development system. always provide the most efficient means for the execu-

With the availability of engineering workstations, tion of a program, they usually can offer very high
several projects developed by the computer science levels of debugging support. The execution of code
community also deserve some mention. These include resulting from processing a user's input is most often
the highly sophisticated Smalltalk [9] system, which is done by another piece of software called a virtual
a complete programming environment for software machine.
development and a programming support system for Input translation into a form suitable for execution
the Ada [1) language which has been marketed by on a machine is done in five phases. During the first
several vendors. two phases, the input is scanned and parsed. Here, the

Ideally, the system described in this report should information is broken into pieces called tokens. These
be an aggregate of all of the best features of the pro- tokens are recognized on a syntactic level during the
grams reviewed here. However, given the constraints second phase in order to determine which program-
on both the time and resources available, this new ming structure is being represented. For example,
programming environment for structural engineering consider the following line of code.
computations can only approximate this ambitious goal.
The new system is still very powerful and flexible. It sum = a + 2.0
combines the response of an interactive program with
the speed and efficiency of a batch-oriented system. It The tokens are "sum," "="a," "+," and "2.0." Syn-
is programmable and extensible. The intent of this tactically, this line represents the form of a binary
report is to provide a common framework where all of addition followed by an assignment. While the second
the separate ideas and concepts presented in this sec- phase analyzes the form of the input, the next transla-
tion can be combined for the benefit of structural engi- lion phase studies its meaning. This third phase, se-

3

mantic analysis, may provide extra information on how deals with the portion of program text where a given
a task is to ultimately be carried out on the machine, name has the same interpretation.
Alternatively, semantic analysis may also find errors in The current Fortran standard [3] allows only for a
the application of the programming constructs based limited number of primitive data types. For the most
upon the context of their use. For example, the follow- part, these types are closely related to the underlying
ing line of code is syntactically correct as an assign- computer hardware and there is no mechanism for
ment of the sum of two constants, but it is semantically defining new data types. By contrast, the system de-
in error because character strings may not be added to scribed here not only supports Fortran's simple types
integer values. but it also allows the programmer to construct new data

types by aggregating these basic types with any already
a = 1 + "abcdefg" existing data types. Essentially, this environment im-

plements some of the features described in the proposed
The fourth phase performs optimizations on the code. Fortran 8x language [4]. The ability to define and
This is critical in a programming environment for struc- manipulate variables composed of aggregates of the
tural engineering calculations because such tasks are basic types not only makes writing and debugging
generally very computationally intensive. For more algorithms much more straightforward, but it also fa-
details on this phase see [15). The fifth and final phase cilitates the integration of different applications under
consists of mapping the translation into a form suitable a common environment. For example, the program-
for execution on the machine. Here, for example, loops ming environment may not only link to an existing
are converted to machine idioms for "test and branch." finite element program coded in Fortran, but it may
More details on all of these phases can be found in [21 also communicate with a symbolic manipulation sys-
or [371. tern written in the LISP language [34].

Under the existing standard, the scope of a variable
3.2 Language Design in a Fortran program is limited to the function or

subroutine where it is defined. Names of common
Language design and implementation are impor- blocks and program units are globally persistent. Fur-

tant issues in any interpretive environment but they are thermore, there is no facility for hiding data definitions.
particularly critical for the system described here. There While program units may associate storage through
are several reasons. First, the language interpreter common statements, there is no standard mechanism
serves as the primary mechanism of communication for maintaining variable names across program units.
between the user and the computer. Hence, the envi- By contrast, the programming environment described
ronment must provide a flexible means of translating here allows not only data hiding, but also contains
concise engineering descriptions into efficient actions. provisions for named global storage.
Second, the form of the language dictates how other
portions of the system fit together. For this reason, the 3.3 Virtual Machine
language must provide sufficient power to express a
wide variety of concepts and ideas. Finally, in order to A virtual machine may be roughly defiaed as a
keep the environment accessible to a large pool of complete computer system, including both the underly-
engineers who may work with the system only on ing hardware and its software, implemented entirely by
occasion, the entire collection of software must be a computer program. Virtual machines mimic the
logically designed and implemented. If possible, it hardware facilities supplied by a processor, memory
should be biased toward exploiting the user's existing and input/output actions as well as the computer's oper-
knowledge of computer programming. For example, ating environment. They may also support other tasks
an environment would be much easier to learn and such as local disk storage and access to network func-
apply if the programming constructs and techniques tions.
were tied to an existing language such as Fortran Virtual machines offer several advantages. First,
rather than a language dialect unfamiliar to engineers, they can provide a portable base for software develop-

Two important language concepts which hold very ment. Only the virtual machine itself must be ported to
prominent places in the design of this environment for a new computer architecture or operating system. Ex-
structural engineering computations have to do with isting applications which utilize the machine do not
the type and scope of variables. A type is categorized have to be modified. Second, these machines present a
by a set of allowable values, a mechanism for specify- common interface to the application software. Hence,
ing those values and a collection of permissible opera- there tends to be greater uniformity for both the pro-
tions which use those values. The scope of a variable grammer and user. Third, virtual machines can be

4

quite flexible and often offer an alternative to large, pages. These pages represent both the instructions and
monolithic programs. A user may pick and choose data of the executable image. In large codes, such as
among options dynamically. There have been many those commonly employed in finite element studies,
successful environments based upon virtual machines there are often many portions of the program which are
including those described in [16], [31] and even [24]. not used in a given analysis. Unfortunately, however,

these unused areas must be transferred in and out of
3.4 Computer Networks computer memory before the proper segments of the

code are resident and available to the central processor.
A few years ago computer networks usually con- This unnecessary and often time consuming conduct

sistcd of small groups of machines sharing relatively has two detrimental effects on today's modem com-
tiny pieces of information around a single office or puter architectures. First, it causes the program to seize
building. Alternatively, they also described a collec- large amounts of valuable physical memory resources.
tion of computers shipping data over a leased telephone This can negatively impact the behavior of other jobs
line. While these networks provided a valuable service running on the computer. Second, many computer
in transferring blocks of information to remote sites, systems dynamically move jobs out of physical mem-
they were somewhat expensive to operate reliably and ory and to secondary disk storage when central memory
they required extensive user intervention, facilities become unavailable. This process is called

Today, computer networks have much more pow- swapping. Since these large programs capture many
erful capabilities. Well defined standards now exist resources, the central processor unnecessarily bumps
[32] so that many very different computers can share jobs to and from the much slower secondary storage.
not only individual data but also physical resources The net result is poor response time for all jobs running
over a wide geographical area. For example, not only on the computer.
can objects such as simple collections of files be trans- Some systems, such as the one described here,
parently and instantaneously accessed, but entire data- permit objects to be dynamically loaded. Only a small
bases may also be made available, set of frequently used functions is actually part of the

Furthermore, as an outgrowth of the ability to executable image. Other portions particular to a given
share physical resources over a computer network there task or implementation are bound as they are needed.
are also some sophisticated communication facilities This can greatly improve computer system perform-
now available. One of these, the public domain Re- ance and response time.
mote Procedure Call or RPC mechanism [6], allows
user level software to dynamically call procedures on
another machine. This powerful operation is supported 4 SYSTEM OVERVIEW
by the system described in this report.

The system described here is a flexible and effi-
3.5 Dynamic Binding cient computational tool for structural engineering

applications. In this environment, not only may the
Dynamic binding is a relatively new technique of problem specifications be easily modified, but new

combining pieces of software together in a manner algorithms and techniques may also be readily imple-
which allows a great deal of flexibility on today's mented. Problem parameters may be monitored and
general purpose virtual memory computers. In stan- changed. This system is based upon current available
dard practice, a programmer often describes the actions computer hardware such as an engineering workstation
a section of software should take by providing a de- with a 32-bit processor, bit-mapped graphics display
scription in a high level language such as Fortran or C. and computer networking interface. Besides being able
This description is then compiled into a format suitable to exploit the capabilities of this type of hardware, the
for the underlying computer hardware. At a later time, system can also take advantage of other, more powerful
different modules are linked or bound together result- machine architectures by linking tasks over a local area
ing in a single monolithic executable image. This computer network.
binding, which is only done once and lasts essentially This environment does not aim to replace existing
forever, is known as static binding, structural engineering software, but rather to augment

In today's virtual memory computer architectures, these programs by allowing the computer code to exist
static binding can lead to gross inefficiencies in the in a larger and more flexible framework. The system
execution of a program image. This is because these works in a manner similar to small, independent oper-
computer systems often bring in tiny pieces of a pro- ating system built on top of the existing operating
gram to the machine's memory in segments called system generic to the workstation. In the spirit of many

5

other existing computer standards such as [32, 121, the 4.1 Virtual Machine
current environment is described in terms of applica-
tion layers. Other than a small and compact set of The virtual machine is the heart of the system.
utilities which represent the core of the system, there is Providing the locus where computations are carried
a great deal of latitude in what an individual implemen- out, it is equivalent to a complete computer system
tation actually contains. In this way, new implementa- implemented entirely in software. The virtual machine
tions can still compatibly exist with older ones and not is constructed to provide an interface between the ac-
be burdened by unnecessary details. For example, a tual computer hardware along with its operating system
particular implementation may not contain a computer software and the rest of the structural engineering pro-
network utility library because its application is not gramming environment. Not only does this arrange-
required. If, however, one is added at some later time, ment provide a portable development platform for the
the guidelines are provided so that this library can rest of the modules, but it also localizes the changes
interface and behave the same across all implementa- that must be made when the entire environment is
tions. ported to a new computer system.

The general structure of the environment is graphi- This virtual machine provides a mechanism for
cally depicted in Figure 1. There are four major com- manipulating small pieces of data by executing simple
ponents: the interpreter, a virtual machine, the set of operations. There is a segment to store instructions, a
structural support libraries and a package of applica- separate segment to store data and a few locations to
lions libraries. Each of these components performs a keep temporary information which needs to be ac-
specific and well defined task within the programming cessed quickly. Additionally, the machine usually
environment, operates by traversing a loop in which instructions are

[GeometryJ Property [Bud.y[]ods [Aayi I Rsls

ommand VStirctual ApiainSfw

aieLibraries

Element
Codes

0s) -- Command .- _ Virtual - Application_- Sfwr
Interpreter --- Machine Libraries[iSbrare

clOther

-tities

Figure 1: General structure of the programming environment.

6

decoded and executed in order to examine and modify A simplified schematic of the virtual machine and
information located in the data area of the system. This how it interacts with the system's other major modules
is completely analogous to the way in which the hard- is shown in Figure 2. The box labeled "Control Logic"
ware inside a modern computer behaves. The separate corresponds to the central processing unit, while the
data and instruction areas represent the physical mem- box labeled "Code Region" contains an internal repre-
ory of the computer, the temporary locations represent sentation of the user's program. The section labeled
the machine registers, and the decoding of commands "Data Region" represents a simplification of the virtual
to examine and modify small pieces of data is the machine's internal memory. Finally, the rectangle la-
function of the central processor. beled "Foreign Data Mapping" corresponds to the ca-

Some typical instructions used by the virtual ma- pability of translating both data and code from external
chine are show in Table 1. Note that the only data types programs and libraries into a format that the virtual
supported at this level are double precision floating machine can understand.
point, integer and character or byte representations. Since the system provides support for exporting
All other data types, including those that are aggre- operations over a local area computer network, the
gated by the interpreter's programming language are machine must provide facilities to build and decode the
decomposed into these simpler types by te parsing and portable data packets. This is critical because different
code generation process. kinds of computers may store objects in different ways.

The virtual machine described here is somewhat For example, even though most machines represent
more complex than those discussed in [29] and [13]. integers as 32 bit numbers, the underlying order of
This is not surprising since the task at hand is much
more ambitious. For example, the input/output facili-
ties are necessarily more robust. Furthermore, the Command
system must interface to other software packages such nterpreter
as existing finite element codes or even subroutine
libraries written in other languages. Hence, the ma-
chine must provide a mechanism for linking the virtual
machine's data area with that of the externally provided r-----------------
module. To carry out this task, the machine provides
the capability to map sections of its internal storage Code Data
area onto the data area of other externally supplied Region Region
subroutines and functions. The user can easily take
advantage of this feature by using the rich variety of ALU71 1 22.0
data types supplied by the interpreter's programming ALU 72 Control
language. ALU73 Logic -3.0

INC28 .8.0

Instruction Parameters Description PSH 4 47.0
I 33.0

ALU op, arguments Binary arithmetic operations I . Foreign .5.0
DEC region, size Decrement value in region " Da-a.' [Data
INC region, size Increment value in region CAL71 0 Mapping •
LOD region, size Load data from region

STR region, size Store data to region POP 4 ,

PSI size Push data onto the stack 46.0
POP size Pop data from the stack Machine 23.0
JPZ code, addres Jump if code is zero L- - - -- - - - - -----
JMP code, op, address Compare code and Jump
CAL address, arguments Call local routine Structural
FSL address, arguments Call remote routine SuLibraries

Table 1: Some typical instructions. Application
Libraries

Figure 2: Virtual machine schematic.

7

these patterns may be quite different. The module
labeled "Foreign Data Mapping" performs this transla-
tion, among others. It also must be able to bind to the
network, establish connections and process the transac-
tion.

There are several points that should be made about _-
the implementation of the virtual machine. Most simple L-

constructions use a stack arrangement. That is, the AAuyzer Imam

representation of the code and data regions depicted in

Figure 2 are contiguous linear sections of memory.
While this is the most straightforward approach, such cod'.
an implementation may be somewhat slow. For this
reason, the control logic contains some storage loca- M o,. ,,o ode

tions, corresponding to registers in an actual computer's er O& Opirmi

hardware, where frequently used information can be
stored. Also, since the virtual machine contains the Muhin

lowest level functions in the entire programming envi- Interpreter Codc

ronment which are frequently executed, pieces of this L..---------
segment are frequently coded in assembly language.
For example, the critical input/output facilities are very
often highly dependent on the underlying computer
hardware, so they are specially coded in assembly
language. Figure 3: Command interpreter schematic.

4.2 Interpreter
combined with these. For example, a package of data

The interpreter serves the critical function of trans- representing a node might be constructed by combining
lating the input into a form which can be efficiently floating point types with integers. Then, an array of
used by the virtual machine. The structure of the 100 objects of this type might be declared as displayed
language accepted by the programming environment below. Comments are enclosed in matching /* *'s.
plays a large part in design of this section. Supporting
a generous number of program constructs and higher type node {
level functions, this module performs the translation of double x, y, z; * locations in space */
the user's input through several phases. Figure 3 sche- integer fixity; P dx,dy,dz,rx,ryrz *1
matically depicts the interpreter's operation. integer id; P a reference number *1

The language constructs accepted by the inter-
preter are a mixture of both C and a dialect of Fortran node nodelist[100]; /* an array of 100 nodes *1
similar to Fortran 8x. The language is structured and
allows for user-defined data types. In addition to sup- Note that, in order to access the spatial location along
porting functions written in its own language, a foreign the X axis of the fifth node, one would use:
function interface also exists for procedures written in
other languages. Finally, objects may be dynamically nodelist[5].x
bound to the programming environment.

Some typical programming constructs are shown where the "." means "member of." This programming
in Table 2. These include a general purpose if then else environment also has a limited pointer mechanism to
statement, a case facility and several iteration or loop allow portions of the virtual machines internal memory
constructs. to be mapped to the storage locations of external data

Data types play an important part in this program- areas. A declaration of the form:
ming environment not only because they make devel-
opment and implementation easier, but also because pointer(node,nodeptr)
they facilitate the interaction between the software
system and programs written externally. The basic would declare the variable nodeptr to be a pointer to an
building blocks of the data types of this system are object of type node. The availability of this simple
shown in Table 3. Additional types may be mixed and pointer type also means that dynamic memory alloca-

8

Statement Form Description

varl = var2 = ... =varN General assignment statement
{ stmtl ; stmt2 ; ...; stmtN) Statement block
if cond then stmt else stint If-then-else construct
case (expr) case range: stint ... Case selection
do (iteration expression) stint Iterated do loop
do (expression) stint Tested do loop
do (value) times stint Ranged do loop
var = name (parameters) Function call
print (format, exprl ... exprN) Print with format

Table 2: Some typical programming constructs.

Size
Type (in bytes) Description

character 1 Smallest available unit
integer 4 General purpose integer values
double 8 General purpose floating point values
complex 16 Optionally implemented complex values
quad 18 Optionally implemented in floating point values

Table 3: Basic data types.

Fall

[ack

Task

Op" Linear System AX = D Figure 4: Remote procedure

SbpFatrA = LU Vir~aI Network Local call schematic.
Su~p Solve LUX n

9RemoteI,------ Super

9 ~ t~ltt

tion is possible within the system. Hence, one can method of operation not only gives a better level of
allocate a list of objects of type node dynamically by performance for larger computations, but it also pro-
using: vides more opportunity for the optimization of numeri-

cal calculations. The third and final method of interac-
flag = allocate(nodeptrnode,100) tion requires the presence of a graphic application

support library. With this method, some degree of

where the intrinsic function allocate is called to assign interaction is provided for selecting objects in a display
storage to the location pointed to by nodeptr. The flag window. This last method is particularly valuable
variable returns an error status if allocate was unable to when computations make use of the structural support
find sufficient space for the new data. librAry.

The foreign function interface provides access not As depicted in Figure 3, there are five major com-
only to the structural engineering and applications li- ponents to the command interpreter. Each of these
braries written in other languages such as C, LISP or modules serves to translate the user's input into a form
Fortran, but it also allows procedures to be accessed suitable for execution on the virtual machine. Lexical
from across the local area network. This ability to analysis breaks the source program up into small pieces
export tasks to remote machines allows the program- called tokens. Next, the parser constructs a new inter-
mer to dynamically select machine power for a given nal representation of the program as a tree. This key
computational task with a fine level of control. Figure encoding preserves the program hierarchy and, through
4 schematically depicts the remote procedure call mecha- the symbol table, the form of the constants and vari-
nism. ables in a portion of the software. During the third

Network tasks are broken into operations at the phase, the program is checked for semantic errors and
procedure level. As shown in Figure 4, a sample some Type conversions are carried out. The code
operation such as the solution of a linear system of optimizer translates expression trees into directed graphs
equations may be considered a single task, or it may be in order to find common expressions. Finally, machine
further divided into sub-tasks, such as factorization and code is generated during the last phase.
forward- and back-substitution. In either case, the From an implementation standpoint, the interpreter
operation is dispatched to the virtual machine where a represents the current state of the art in computer sci-
course of action is taken. The task may be executed ence applications. It makes use of an LALR parser [2],
locally by the virtual machine. Or, the operation might sophisticated code optimizer [151 and code generator
be done on a local computer. Alternatively, the task [29]. In addition to providing facilities for interactive
could be exported to a larger supercomputer if neces- input and debugging support, the structural engineering
sary. In the event that a given computer is not avail- programming environment described here can commu-
able, a fall-back mechanism is possible. Hence, a nicate over a local area network through the public
computation does not have to halt if access to remote domain RPC [61 mechanism.
machine is not possible, the calculation could fall-back Because the command interpreter plays such a
to a local computer and continue processing. While the critical role in how the system is used, there are many
remote procedure call mechanism does entail a certain more features which could be added. A method for
amount of overhead to set up and tear down network incremental compilation, such as the one described in
connections, it may still prove very worthwhile if the 1261 would greatly improve system response, although
remote resources can provide sufficient capacity to it might require that the form of the language be modi-
handle very computationally intensive tasks. fied somewhat. Also, because different computers

Users may interact with the programming environ- have substantially diverse ways of evaluating floating
ment through the interpreter in three ways. The first is point expressions 1201, a more general format is re-
by directly entering commands into the system. The quired for floating point values exported by the remote
input is translated and run on the virtual machine syn- procedure mechanism. Unfortunately, this topic is still
chronously. Any program information is buffered so an active area of research and no standard method
that the user may return to the previously entered data exists for dealing with this problem.
and modify it by using a standard text editor. This
mode of operation is similar to that provided by [9]. 4.3 Structural Libraries
While this method of interaction can be very conven-
ient for creating short programs or debugging algo- The structural libraries provide the primary means
rithms, most larger problems often use a second or of applying the programming environment in engineer-
batch oriented method. Here, input is processed and ing calculations. This collection of routines is specifi-
executed by the virtual machine asynchronously. This cally oriented toward solving structural engineering

10

problems. Beside providing a named work space for cal properties such as mass, density and thickness but
data, the code in this library supplies a collection of also analytical relationships such as yield surfaces,
utilities for building and manipulating finite element damage constraints and nonlinear response parameters.
models. A variety of standard structural analysis tech- A sample of some of the features provided by this
niques is also available, algorithms and techniques collection of routines is shown in Table 6.
which are not part of this library can be readily pro-
grammed by supplying information to the command
interpreter.Function Description

This programming environment provides a storage gen grid (xl, yl ... Rectangular grid

area for structural engineering models. The major xN, yN, n, m)
portions are listed and described in Table 4. There can move node (node, xl, Move a node in space
be many different storage areas during a session, but y1, zl)
each space has a unique name associated with it. Asso- id = add node (xl, yl, zl) Add a node, return identifier
ciation between this named storage area and other flag = delete node (node) Delete a node, return code

portions of the system can be automatically mapped by
the virtual machine. Table 5: Some geometry operations.

Area Description

Nodes Spatial nodal locations Function Description

Elements Element incidence pool
Materials Geometrical and material parameters id = add property New instance
Boundary Displacement boundary conditions (valuel ... valueN)Loads Nodal and element force conditions ange property Change nth id entryI (id, nth, value)

flag = delete property Delete a id, returning codeTable 4: Named work space data areas. (d
(id)

The structural support library separates engineer-
ing tasks into six distinct areas. This division roughly Table 6: Some property operations.
corresponds to the ways in which analytical models are
commonly constructed, modified and used. Note that 4.3.3 Boundary
the libraries only provide an interface in terms of func-
tions that can be called through the command inter- Displacement constraints can be added or modi-
preter. This collection of utilities is essentially state- fied by using the utilities supplied in this package. In
less. When context information is required by one of addition to providing simple support conditions, dis-
the routines, an identification handle is returned by the placement constraints may also be specified. Such
routine which creates an instance of an object. constraints might be useful during an analysis which

requires either complex support conditions or involves
4.3.1 Geometry the study of bodies subject to contact conditions. Some

functions from this subsection are listed in Table 7.
The geometry subsection allows an engineer to

build and change the geometrical description of a model.
For example, this area contains finite element mesh Function Description
generators for rectangular, cylindrical and spherical id = add boundary New boundary instance
coordinate systems. In addition it may contain a gra-
phical interface so that these meshes can be displayed (node)
on a terminal or hardcopy device. Some sample fea- flag = delete boundary Delete support condition
tures of this package are listed in Table 5. (id)

flag = set boundary (id, Add fixed support at id

4.3.2 Property code)
flag = mast boundary Link id to master

The property subsection lets the engineer specify (master, code, id)

the constitutive and material properties of the model
under consideration. This includes not only the physi- Table 7: Some boundary operations.

11

4.3.4 Loads to examine various response parameters. For example,
end forces and moments might be converted to stresses

By using this subsection of utilities, a user may or reactions may be calculated. Although all informa-
specify the static and dynamic loadings on a model. tion in the analytical model's work space is available at
Different loading cases are provided along with the the interpreter level, these routines provide a set of
capability to combine different loading conditions. most common utilities usually required by the engineer
Through the command interpreter, options are also in order to investigate the behavior of a structural
available for generating loadings according to general model. Several features of this package are shown in
functions. Several possible operations provided in this Table 10.
package are listed in Table 8.

Function Description

Function Description disp = delta result (id) Extract displacements
stress = stress result (id) Extract element stresses

id = add load (node, New load instance for case noe stoe result (id) Prct nodal stresses

case), node =node result (id) IProject nodal stresses

flag = delete load Delete load condition Table 10: Features from the result package.
(id)

id = combine load New load = 11 * ml + 12 * m2 4.4. Application Libraries
(idl, ml, id2, m2)

id = time load (kind, Dynamic load The application libraries consist of a collection of
id, dt) utilities which, for the most part, optionally support the

programming environment. They essentially provide a
Table 8: Some loading operations. mechanism by which the system can be extended in a

portable and compatible way. While the virtual ma-
4.3.5 Analysis chine, interpreter and structural libraries are necessary

to the software system in terms of structural engineer-
This package of analysis routines allows the engi- ing calculations, the application libraries provide extra

neer to study the structural model by using a library of functionality.
existing algorithms. Note that the programmer may By using the dynamic binding mechanism of the
also directly specify new algorithms and techniques system, the programmer can make efficient use of the
directly at the interpreter level. This collection of tools supplied by this collection of software. Figure 5
software routines covers the most common analytical shows how new applications can "grow" to accommo-
methods including static analysis, different approaches date the new operations. Originally the two boxes on
to solution of nonlinear systems, and options for dy- the left represent the original programming environ-
namic analysis, including both time history and re- ment and a library of additional applications. The
sponse spectrum solution methods. A few operations interpreter instructs the system to bind the new utility
are listed in Table 9. to the system dynamically. The box on the right repre-

sents a new version of the system, which includes the
application. Once this binding has taken place, the user

Function Description may call any function in the library as if it were origi-
nally part of the system. The layered approach is not

id = analysis feap Create a FEAP input file only very efficient in today's virtual memory comput-
(workspace) ers, but it also facilitates the construction of software

flag = run feap (id) Carry out a FEAP analysis systems tailored to specific applications and hardware
id = save feap (id) Store FEAP response environments. If a particular problem does not require

parameter a set of operations, then it never has to become part of
the programming environment.

Table 9: Some analytical operations. In the context of the present system, the applica-
tions library contains three separate utilities. They are:

4.3.6 Results the system interface to a set of popular finite element
codes, a mechanism for linking to some networking

This last collection of routines allows the engineer and mathematical libraries and a provision to connect
to extract information from the analysis phase in order to a network based computer graphics system.

12

example discusses how the system might be used to
carry out a nonlinear analysis. Two other examples are
presented by demonstrating the capabilities of the pro-

Base New gramming environment in common situations.
System System The task of studying the nonlinear response of a

finite element system to a given loading condition
involves three major steps. First, the model must be
constructed. Next, a solution method must be chosen

Additional t and applied to the model. Finally, response parameters
Function I are extracted and studied.

L_- - The construction of a finite element model in the
system described in this report involves creating a

Figure 5: Dynamic binding, named workspace for the data, generating information
by entering commands to the interpreter and possibly
examining a graphical representation of the structure

The links to various finite element codes is usually by using the facilities provided by the window system.
system dependent. Many sites have definite prefer- For instance, the following commands might be used to
cnces for the codes they wish to support and use. The generate the geometrical description of the finite ele-
library routines do not do any calculations themselves. ment model. The model is a 7 by 7 grid of elements 10
Instead, they only implement the interface between the units by 10 units in size. The interior nodes are per-
virtual machine and the data areas of the finite element turbed by some amount in order to study the behavior
programs. of a distorted mesh.

The second set of utilities, access to network and
mathematical libraries, performs two important tasks. function my-geomctricmodel(modcl-id)
The first is make availabl, a set of functions which can Model modelid;
map user level data objects into a portable network {
independent format. The second is provide an interface integer i;
to several popular mathematical subroutine collections. double randomo;
These include software systems such as LINPACK [8], Node node-data;
EISPACK [30], and the IMSL [101 collection of rou- modelid = new-model("Nonlinear Study");
tines. This interface provides sonic powerful tools gen-grd(0,0,10,0,1,10,0,10,7,7);
when new engineering algorithms are developed and do i = 1,49 (
studied. node-data = node-info(i);

The third group of application utilities is an inter- if ((node-data.x > 0) and
face to a graphics and workstation windowing system (nodedata.y > 0) and
called X Windows [281. The present library currently (node.data.x - 10) and
has the capability to display geometrical data, draw (node.data.y < 10)) then (
simple graphs and even animate the response of engi- /* random returns values in the range 0 < n - 1 */
neering models to various loading conditions. node-data.x = node-data.x + 0.5*(random0 - 0.5;

There are many other possible applications which node-data.y = node-data.y + 0.5*(random0). 0.5);

might be added in the future. For example, support for
high level engineering graphics interface such as PHIGS
151, a library of routines for exploiting the parallel return;
processing of capabilities of hardware, or a mechanism
for translating the language accepted by the interpreter)
into standard Fortran would all be very useful addi-
tions to the programming environment. Loads, material properties, and boundary conditions

are added and modified in a similar manner.
5 EXAMPLES Next, an analysis technique is chosen. For simple

nonlinear behavior, the engineer might elect to study
In order to illustrate how this programming envi- the system using an existing finite element package.

ronment can be applied to structural engineering prob- Hence, the user could simply generate an input file for
lems some short examples are listed here. The first the code.

13

generate-input(model-id) portion of program text visible in the window is repre-
Model modeLid; sentative of how a piece of software would appear for

S1eany application. The window in the upper right hand/* 10 steps of newton raphson iteration *
comer contains a script for the MACSYMA system.describe-analysis(model.id,"newton",10); Ti olcino omnsisrcsMCYAt

/*"code" is the package which will use the analysis */ This collection of commands instcts MACSYMA to

gen..code(modelid,"code"); symbolically solve the differential equation of motion
return of the simple model. Only a portion of the entire script

is visible in this window. The window in the upper left
hand comer depicts the physical representation of the

Alternatively, the user might specify the algorithm model, and how it responds to various excitations.
directly, instead of using the templates provided by the This example illustrates three important features
system. For example, to perform 10 Newton-Raphson of the system. First, it shows the environment's capa-
iterations, the following commands could be used. bility to communicate with other computer programs,

even those written in different languages. Second, the
my.newton(model-id) example clarifies the relationship between the com-
Model modelid; mand interpreter, network interface and virtual ma-
{ chine by placing each of the operations in a separate

do (10) times window. Finally, it also features the graphic capabili-
make-tangent(modelid); ties of the environment.
make-residual(model-id); The second example illustrates the use of the sys-
getdisplacements(modelid); tern for the study of the nonlinear response of a braced

} frame due to an earthquake excitation. Here, a six story
frame is subjected to a scaled ground acceleration. The

Other functions are invoked to construct and assemble actual analysis is carried out over a local area computer

the model's stiffness and load matrices. network, and selected results are saved for later study.
Finally, the response parameters corresponding to Four windows are depicted in Figure 7. As before,

displacements and stress may be examined. The re- the bottom window contains the programming environ-

sponse parameters may be combined with the mesh ment's command interpreter. The particular segment of

geometry, or they be output directly as numerical val- code visible in the window scales the displacement

Iles. response values so that they may be more readily seen
Two other demonstration examples are also shown in the graphic display. The windows at the top of the

here. Both of these seek to illustrate some of the screen contain the animated response of the frame

working capabilities of the current programming ervi- model. The window at the top right illustrates the

ronrment. entire model and its response to the loading. Note that

The first example is a demonstration system for brace on the second level has buckled and undergone a

investigating the response of a single degree of free- permanent vertical deformation. The windows in the

dom system. In order to carry out the required calcula- top right hand portion of the screen are attached to

tions, the programming environment interfaces lo the specific response values. In this case, these happen to

MACSYMA [21] symbolic manipulation system. Us- be the top story horizontal displacement and the second

ing this tool, an analytical result in terms of the model's story vertical displacement. Of course, other monitor-

physical parameters k, in and c may be obtained. The ing is possible.

MACSYMA system generates a result in the Fortran This example illustrates the capabilities of the sys-

language, which is then returned to the programming tern to exploit a local area computer network connec-
environment. Given this information, a graphical rep- tion in order to carry out an analysis and forward the

resentation of the system may be animated to show how results back to the programming environment. Further-

the system might respond to a given set of initial more, it also shows the system's ability to integrate the

conditions. analysis operation with a workstation's graphic display.

Figure 6 shows a copy of the workstation's display
during the animation process. Three windows appear 6 SUMMARY
on the screen. The bottom window contains the pro-
granming environment's command interpreter. Note This report gives a somewhat detailed overview of
that the lines input by the user are numbered, so that a programming environment for structural engineering

they may later be recalled, if necessary. The short computations. While the system is primarily intended

14

for the research community, it may also find a wide The system described in this report is intended to
variety of applications in commercial production situ- provide state of the art facilities for engineering calcu-
ations as well. The programmidng system is highly lations. Accordingly, this programming environment
modularized, provides a flexible and extensible plat- contains several innovative ideas. Some of these are
form for softwvare development and highly suited to listed below:
today's computer technology.

With the availability of low cost engineering work- *The system is compartmentalized into four major
stations, equipped with powerful central processors, a areas: an interpreter, the virtual machine, a set of struc-
computer network interface and high resolution com- tural libraries and a collection of application libraries.
puter graphic capabilities, the computational opportu- This division not only makes the development and
nities for structural engineers is gradually changing. maintenance of the system much more straightforward,
No longer does the development of new algorithms and but it also makes the environment much easier to use by
techniques require that a programmer carry out many providing a logical overall framework.
iterations of the "edit, compile and debug" cycle. New
computer hardware has changed all of that. It is now *A programmable and extensible command in-
possible to provide a custom environment for structural terpreter is the major user level interface to the envi-
engineering applications which provides support not ronment. The command language is quite sophisti-
only in terms of the creation and manipulation of finite cated. It allows the engineer to write loops, condition-
element models, but also in the development and study als, internal proceduires and define variables. Further-
of new algorithms and computational strategies. more, the system has several basic data types, and new

data types may be defined by the programmer.

VIM CSAL Editor
than Cr1: alpha 4 beta.

r2: alpha - beta.
print("--- system i9 overdamped ---.
returT(: Xe Cr1 0 +) C - Xe C r2 M)

else (beta; Xi b ee
IIo pI1nt("--- system Is underdamped--.
L1return(Xe ^(alpha - t) (B cos(beta t)U

+ C - Oln(beta -t)Ms~1
SprIng Dashpot de:,, - 'dlff(Cx,t.2) + r - 'd14f(x,t,1(+ k -x

-ni -u 2 - A *cos(w-t);1 Kh~tl: . (do(CX~x.t));
xp~l:.D -u~nX;L) 4 E

Wxt(t):- xh(t) +. x(t):
plugin:-ev(de.d1F(f.oxpand.x *xp(t)):

Timeerqnl:coef?(plugln.sIn(w.tl):
eqn21coqff(plugln.ccG(W-t));

- - globalsoivu;traws
1&otn:llnsolve((.~qnle,2l.ED.EJ)s

mass fqnixt(O t 0;
eqn2:*vCX~t-0) - 0;

7,eolnsllnsolvrCfrqnl~eqn2l.,CD.Cl s

35 Iteger foreign vaximas
353 Integer status:
354

356 Error("script file does not exist");

_ 5_ if ((status V vaxlmacarglistl) 1- 0)
359 Error(Vaxima failed");

- ~ 360 else
M A 61 nleate..SOF(Flndiur'tran('result") I;

362~Yt./\ ~ 363 Cleanj.Jp()

))))) [Of an "Irput.cosa

)M)> Currentlyj using 1535 of' 50000 lines.

S>w Fiure 6 igedge ffedmdmntain
0 r15

.. Iit a I - -t

q 0. -4*ILAflAAflhI.

.*51 Tim (seconds)

-... . ,,,. \..,

44 5

CTim C(seconds

CSAL Cm.,nd UWndo.CSL> list 3300,3320 I

3300 void ScaleHistcrj..Eata(node.s.eps)
3302 integer node. steps:3302 C

3303 tilteger I:3304
3305 co (I = I.Staps) C3306 Inmate.PacketElj.x(node3 - anlmate-packetCIl.x(node] - MAG.X:
3307 an matg acket(iW.U(nodo) = animate:packet(ij .UV(node] MAG.Y:

,4,, 3308 animate.packet~il.tcnodex animte.-packet[I].tCnode] 10:
3309
3310

N3311
3312 void Antma.te-.'rame(,d, steps)
3313 rrame Id:
3314 Integer steos,~4 ~ 3315

36 etD.OiplIaeemmn..Data(2.1epris
3317 Get.DI spacmlnn _Data (6.1tips i;
3318
3319 But d.Packet(steps);
3320 Build.Plot..Data(Istep):
CSAi.L>

Figure 7: Nonlinear response of a braced frame.

This environment supports computer network • The programming environment is comprised of
operations. In particular, tasks may be exported to dif- several layers of implementation. Only a small collec-
fcrent computers across a local area network on a lion of utilities makes up the basic system, all other
procedure basis. In addition to providing a fall back items may be optionally added if they are required by
mechanism if remote resources are not available, the an implementation.
system will automatically convert data to and from a
computer independent representation. • This system provides a callable interface to a

structural support library. A collection of routines in
* A virtual machine makes the system easier to this library, along with a named work space, allows an

move to new computers and operating systems by lo- engineer to flexibly tailor how a given engineering
calizing the areas where changes need to be made. The model might be rel)resented. Furthermore, since algo-
virtual machine provides a level of abstraction above rithms can also be described at the command inter-
the actual workstation hardware and software, and it preter level, there is no longer a division between a
helps to make the various system interfaces much more finite element model and the operations performed on
uniform, it. Hence, for example, new techniques such as adap-

tive h and p order mesh refinement may be more
* By allowing objects to be bound to the system at readily implemented.

run time, this computer environment can efficiently run
on today's engineering workstations. Dynamic binding * The set of application libraries can be used to
not only makes the I ise system much smaller, but it take advantage of the large body of existing computer
also allows library routines to be developed asynchro- code. For example, the system has the capability to
nously. communicate with large finite element codes and a set

of standard mathematical libraries.

16

This programming environment for structural en- [9] Goldberg, A.; Robson, D. (1983) Smalltalk-80: The
gineering applications can offer a great deal of support Language and Its Implementations, Reading Mass.;
to the users. Because the system is primarily interac- Addison-Wesley.
tive, the engineer can examine and modify data and
algorithms quite easily. By taking advantage of several [10] IMSL, Inc; (1982) IMSL Library Reference Guide,
emerging standards for computer interaction, graphics Edition 9, Houston, Texas; IMSL, Inc.
and networking, this programming environment can be
constructed with today's technology. [111 Institute of Electrical and Electronics Engineers

(1987) Guide to POSIX Based Open System Architec-
7 ACKNOWLEDGMENT lure, Washington, DC; IEEE Computer Standards Sec-

retariat.
Supervision and guidance of this study were pro-

vided by Professor R. L. Taylor, University of Califor- [121 International Standards Organization (1981) Gra-
nia, Berkeley. phical Kernel System (GKS), Version 6.6.

8 REFERENCES [131 Kemighan, B.W. and Pike, R. (1984) The Unix

Programming Environment, Englewood Cliffs, NJ; Pren-
[1] Ada Joint Program Office (1983) Reference Man- tice Hall.
ual for the Ada Programming Language, ANSI/Mili-
tary Standard MIL-STD-1815A, Washington, D.C.; [14] Landers, J.A.; Austin, M.A.; Taylor, R.L.; Pister,
United States Department of Defense. K.S (1986) A Programming Environment for Structural

Engineering Computations, Proceedings of the First
[2] Aho, A.V.; Sethi, R.; Ullman, J.D. (1986) Compil- World Conference on Computational Mechanics, Austin,
ers, Principles, Techniques and Tools, Reading, Mass.; Texas.
Addison-Wesley.

[15] Landers, J.A. (to appear) PGF: A Postprocessor
[3] ANS X3.9 (1978) American National Standard for generated Fortran, Engineering with Computers.
Programming Language Fortran, New York; Ameri-
can National Standards Institute. [16] Landers, J.A. (1982) SDMS: The Structural Data

Management System, Chicago, Ill.; Skidmore, Owings
[41 ANS X3.9-198x (1987) Draft Proposed Revised and Merrill.
American National Standard Programming Language
Fortran, New York; American National Standards In- [171 Logcher, R.D. (1967) ICES STRUDL-I The Struc-
stitute. tural Design Language, Cambridge Mass.; MIT De-

partment of Civil Engineering.
151 ANS X3H3/85-21 (1985) Draft American National
Standard for the Functional Specification of the Pro- [18] Lopez, L.A. (1972) POLO: Problem-Oriented
grammer's Hierarchical Interactive Graphics System Language Organizer, Computers and Structures, 2.4,
(PHIGS), New York; American National Standards 555-572.
Institute.

[191 MacNeal, R.H.; McCormick, C.W. (1971), The
[6] Birrell, A.D.; Nelson, B.J. (1984) Implementing NASTRAN Computer Program for Structural Analysis,
Remote Procedure Calls, ACM Transactions on Com- Computers and Structures, 1.3, 389-412.
puler Systems, 2.1, 39-59.

[201 Maguire, G.Q; Smith, J.M. (1988) Process Migra.
[7] DeSalvo, G.J.; Swanson, J.A. (1985) ANSYS User's tion: Effects on Scientific Computationt, SIGPLAN
Manual, Houston, Pa.; Swanson Analysis Systems, Inc. Notices, 23.3, 102-106.

[8] Dongarra, J.J.; Moler, C.B.; Bunch, J.R.; Stewart, [211 MATHLAB Group (1977) MACSYMA Reference
G.W. (1979) LIN-PACK User's Guide, Philadelphia, Manual, Version Ten, Cambridge, Mass.; MIT Labora-
P.A.; SIAM. tory for Computer Science.

17

[22] McDonnell Douglas Automation Company (1974) [30] Smith, B.T.; Boyle, J.M.; Dongarra, J.J.; Garbow,
ICES STRUDL Improvements User's Manual, Techni- B.S.; Ikebe, Y.; Klema, V.C.; Moler, C.B. (1976) Ma-
cal Note M1090043. trix Eigensystem Routines - EIS-PACK Guide, New

York; Springer-Verlang Lecture Notes in Computer
[23] Moler, C. (1982) MATLAB User's Guide, Depart- Science.
ment of Computer Science, University of New Mex-
ico. [31] SOFTECH Microsystems (1980) UCSD Pascal

User's Manual, San Diego, CA.

[24] Parisi, M.A.; Rehak, D.R. (1986) General Pur-

pose Software for Probability Computations - A Vir- [32] SRI International (1985) 1985 DDN Protocol
tual Machine Approach, Engineering with Computers. Handbook, Menlo Park, CA; DDN Network Informa-
1.3, 61-173. tion Center.

[25] PDA Engineering, PATRAN User's- Guide: Vol- [33] Taylor, R.L. (1977) Computer Procedures for
umes 1-2, Santa Ana, CA; PDA Engineering. Finite Element Analysis, in The Finite Element Method

by O.C. Zienkiewicz, London: McGraw-Hill.
[261 Reps, T.W. (1984) Generating Language-Based
Environments, Cambridge, Mass.; MIT Press. [34] Wilensky, R. (1984) LISPcraft, New York; W.W.

Norton.
[27] Sandberg, R. (1985) Design and Implementation
of the Sun Network Filesystem, Proceedings of the [35] Wilson, E.L. (1979) CAL 78 User Information
Usenix 1985 Summer Conference, 119-130. Manual, SESM Report Number 79-1, University of

California, Berkeley; Department of Civil Engineering
[281 Scheifler, R.; Gettys, J. (1986) The X Window
System, LCS Memo LCS-TM-368, Cambridge Mass.: [36] Wilson, E.L. (1970) A General Structural Analy-
MIT Laboratory for Computer Science. sis Program (SAP), SESM Report Number 70-20, Uni-

versity of California, Berkeley; Department of Civil
[29] Schreiner, A.T.; Friedman, H.G. (1985) Introduc- Engineering.
lion to Compiler Construction with UNIX, Englewood
Cliffs, NJ; Prentice Hall. [37] Wirth, N. (1976) Algorithms + Data Structures =

Programs, Englewood Cliffs, NJ; Prentice Hall.

18

DISTRIBUTION LIST

AFESC TIC (library), Tyndall AFB, FI
ARMY CECOM R&D Tech Lib, Ft Monmouth, NJ
ARMY BELVOIR R&D CEN STRBE-JB. Ft Belvoir. VA
ARMY CERL Library, Champaign. IL
ARMY ENGR DIST Library. Seattle, WA; Phila. Lib. Philadelphia, PA
ARMY EWES Library, Vicksburg MS
ARMY LMC Fort Lee, VA
ARMY MMRC DRXMR-SM (Lenoe), Watertown. MA
ASST SECRETARY OF THE NAVY RE&S. Washington. DC
CBC Tech Library, Gulfport. MS
CBU 403, OIC, Annapolis, MD
CNA Tech Library, Alexandria. VA
COMDT COGARD Library. Washington. DC
DIA DB-6EI, Washington. DC
DIRSSP Tech Lib, Washington. DC
DNA Tech Svcs Lib, Mercury, NV
DOD Explos Safety Brd (Lib), Washington. DC
DOE Knolls Atomic Pwr Lab. Lib. Schenectady. NY: Wnd/Ocean Tech Div. Tobacco. MD
DTIC Alexandria, VA
GIDEP OIC. Corona, CA
GSA Ch Engrg Br. PQB. Washington. DC
LIBRARY OF CONGRESS Sci & Tech Div. Washington. DC
NAVCOASTSYSCEN Tech Library. Panama City. FL
NAVCOMMSTA Library, Diego Garcia
NAVEODTECHCEN Tech Library, Indian Head. MD
NAVFACENGCOM Code 09M124 (Lib). Alexandria, VA
NAVFACENGCOM - CHES DIV. FPO-IPL. Washington. DC
NAVFACENGCOM - NORTH DIV. Code 04AL. Philadelphia. PA
NAVFACENGCOM - PAC DIV. Library. Pearl Harbor. HI
NAVFACENGCOM - SOUTH DIV. Library. Charleston, SC
NAVFACENGCOM - WEST DIV. Code 04A2.2 (Lib). San Bruno. CA
NAVOCEANSYSCEN Code 9642B. San Diego. CA
NAVPGSCOL Code 69 (T. Sarpkaya). Monterey CA
NAVSCOLCECOFF Code C35. Port Hueneme. CA
NAVSHIPREPFAC Library. Guam
NAVSHIPYD Code 202.5 (Library). Bremerton. WA; Library. Portsmouth. NH
NAVWARCOL Code 24. Newport. RI
NRL Code 4670 (B. Faraday). Washington. DC
NTIS Lehmann, Springfield. VA
NUSC DET Lib (Code 4533). Newport. RI
OCNR Code 1113. Arlington. VA
OFFICE OF SECRETARY OF DEFENSE DDR&E. Washington. DC
PMTC Code 1018. Point Mugu. CA
PWC Code 123C. San Diego. CA; Library (Code 134). Pearl Harbor. HIE Lit, "ry. Guam. Mariana Islands;

Library. Norfolk, VA; Library. Pensacola. FL; Library. Yokosuka. Japan: Tech Library. Subic Bay. RP
SUPSHIP Tech Library. Newport News. VA
US GOVT PRINTING OFFC Library Prgms Svcs. SLLC. Washington. DC; Supt Does, SLLA. Washington. DC
USNA Ch, Mech Engrg Dept. Annapolis. MD: Ocean Engrg Dept (McCormick). Annapolis. MD
CALIFORNIA STATE UNIVERSITY C.V. Chelapati. Long Beach. CA
CASE WESTERN RESERVE UNIV CE Dept (Pcrdikaris). Cleveland. O1
CATHOLIC UNIV of Am. CE Dept (Kim). Washington. DC
CITY OF LIVERMORE Dackins. PE. Livermore. CA
CLARKSON COLL OF TECH CE Dept (Batson). Potsdam. NY
COLORADO STATE UNIVERSITY CE Dept (Criswell), Ft Collins. CO
CORNELL UNIVERSITY Civil & Environ Engrg (Dr. Kulhawy). Ithaca. NY; Library. Ithaca. NY
DAMES & MOORE Library. Los Angeles. CA
FLORIDA ATLANTIC UNIVERSITY Ocean Engrg Dept (Martin). Boca Raton. FL; Ocean Engrg Dept (Su).

Boca Raton. FL
FLORIDA INST OF TECH CE Dept (Kalajian). Melbourne. FL
GEORGE WASHINGTON UNIV Engrg & App Sci Scol (Fox). Washington. DC
GEORGIA INSTITUTE OF TECHNOLOGY CE Scol (Kahn). Atlanta. GA: CE Scol (Swanger). Atlanta. GA;

CE Scol (Zuruck), Atlanta. GA
INSTITUTE OF MARINE SCIENCES Library. Port Aransas. TX
JOHNS HOPKINS UNIV CE Dept (Jones). Baltimore. MD
LAWRENCE LIVERMORE NATL LAB FJ Tokarz. Livermore. CA: Plant Engrg Lib (L-654). Livermore. CA

LEHIGH UNIVERSITY Linderman Library. Bethlehem. PA
LONG BEACH PORT Engrg Dir (Allen). Long Beach. CA
MICHIGAN TECH UNIVERSITY CE Dept (Haas). Houghton. MI
MIT Engrg Lib, Cambridge, MA. Lib. Tech Reports. Cambridge. MA
NATL ACADEMY OF SCIENCES NRC. Naval Studies Bd. Washington. DC
OKLAHOMA STATE UNIV Ext Dist Offc. Tech Transfer Cen. Ada OK
OREGON STATE UNIVERSITY CE Dept (Hicks). Corvallis. OR
PENNSYLVANIA STATE UNIVERSITY Gotolski. University Park. PA: Rsch Lab (Snyder). State College.

PA
PORTLAND STATE UNIVERSITY Engrg Dept (Migliore). Portland. OR
PURDUE UNIVERSITY CE Scol (Chen). W. Lafayette. IN: CE Scol (Leonards). W. Lafayette. IN: Engrg

Lib. W. Lafayette. IN
SAN DIEGO STATE UNIV CE Dept (Krishnamoorthy). San Diego. CA
SEATI'LE PORT W Ritchie. Seattle. WA
SEATTLE UNIVERSITY CE Dept (Schwaegler). Seattle. WA
SOUTHWEST RSCH INST Energetic Sys Dept (Esparza). San Antonio. TX: King. San Antonio. TX- M.

Polcyn. San Antonio. TX: Marchand. San Antonio. TX
STATE UNIVERSITY OF NEW YORK CE Dept (Reinhorn). Buffalo. NY: CE Dept. Buffalo. NY
TEXAS A&M UNIVERSITY CE Dept (Machemehl). College Station. TX: CE Dept (Niedzwecki). College

Station. TX: Ocean Engr Proj. College Station. TX
UNIVERSITY OF CALIFORNIA CE Dept (Fenves). Berkeley. CA: CE Dept (Fourney). Los Angeles. CA:

CE Dept (Gerwick). Berkeley. CA: CE Dept (Polivka). Berkeley. CA: CE Dept (Williamson). Berkeley.
CA; Naval Archt Dept. Berkeley. CA

UNIVERSITY OF HARTFORD CE Dept (Keshawarz). West Hartford. CT
UNIVERSITY OF HAWAII CE Dept (Chiu). Honolulu. HI: Manoa. Library. Honolulu. HI: Ocean Engrg

Dept (Ertekin). Honolulu. HI
UNIVERSITY OF ILLINOIS Library. Urbana. IL: Metz Ref Rm. Urbana. IL
UNIVERSITY OF MICHIGAN CE Dept (Richart). Ann Arbor. MI
UNIVERSITY OF MISSOURI Military Sci Dept. Rolla. MO
UNIVERSITY OF NEBRASKA Polar Ice Coring Office. Lincoln. NE
UNIVERSITY OF NEW MEXICO HL Schreyer. Albuquerque. NM: NMERI (Bean). Albuquerque. NM:

NMERI (Falk). Albuquerque. NM: NMERI (Leigh). Albuquerque. NM
UNIVERSITY OF PENNSYLVANIA Dept of Arch (P. McCleary). Philadelphia. PA
UNIVERSITY OF RHODE ISLAND CE Dept (Kovacs). Kingston. RI: CE Dept. Kingston. RI
UNIVERSITY OF TEXAS CE Dept (Thompson). Austin. TX: Construction Industry Inst. Austin. TX: ECJ

4.8 (Breen). Austin. TX: Fusion Studies Inst (Kotschenrcuther). Austin. TX
UNIVERSITY OF WASHINGTON CE Dept (Hartz). Seattle. WA: CE Dept (Mattock). Seattle. WA
UNIVERSITY OF WISCONSIN Great Lakes Studies Cen. Milwaukee. WI
WASHINGTON OES/PHS/DDHS (Ishihara). Seattle. WA
ADVANCED TECHNOLOGY. INC Ops Cen Mgr (Bednar). Camarillo. CA
AMERICAN CONCRETE INSTITUTE Library. Detroit. MI
ARCHITECTURAL STUDIO 3 M Mrvos. Long Beach. CA
ARVID GRANT & ASSOC Olympia. WA
ATLANTIC RICHFIELD CO RE Smith. Dallas. TX
BATTELLE D Frink. Columbus. OH
BECHTEL CIVIL. INC K. Mark. San Francisco. CA: Woolston. San Francisco. CA
BETHLEHEM STEEL CO Engrg Dept (Dismuke). Bethlehem. PA
BRITISH EMBASSY Sci & Tech Dept (Wilkins). Washington. DC
BROWN & ROOT Ward. Houston. TX
CHEVRON OIL FLD RSCH CO Strickland. La Habra. CA
CHILDS ENGRG CORP K.M. Childs. Jr. Medfield. MA
CLARENCE R JONES. CONSULTN. LTD Augusta. GA
COLLINS ENGRG. INC M Garlich. Chicago. IL
CONRAD ASSOC Luisoni. Van Nuys. CA
CONSOER TOWNSEND & ASSOC Schramm. Chicago. IL
CONSTRUCTION TECH LABS. INC G. Corley. Skokie. IL
CURTIS ENGRG CORP DH Curtis. National City. CA
DAVY DRAVO Wright. Pittsburg. PA
DILLINGHAM CONSTR CORP (HD&C). F McHale. Honolulu. HI
EARL & WRIGHT CONSULTING ENGRGS Jensen. San Francisco. CA
EVALUATION ASSOC. INC MA Fedele. King of Prussia. PA
GRIDCO Ong Yam Chai, Singapore
GRUMMAN AEROSPACE CORP Tech Info Ctr. Bethpage. NY
GULF COAST RSCH LAB Library. Ocean Sorins. MS

ADINA ENGRG, INC / Walczak, Watertown, HA

AFOSR / NA (LT COL L.D. Hokanson), Washington, DC

APPLIED RSCH ASSOC, INC / Higgins, Albuquerque, NH

ARMSTRONG AERO HED RSCH LAB / Ovenshire, Wright-Patterson AFB, OH

ARHY CORPS OF ENGRS / HQ, DAEN-ECE-D (Paavola), Washington, DC

ARMY EWES / WES (Norman), Vicksburg, HS

ARMY EWES / WES (Peters), Vicksburg, HS

ARMY EWES / WESIM-C (N. Radhadrishnan), Vicksburg, HS

CATHOLIC UNIV / CE Dept (Kim) Washington, DC

CENTRIC Engineering Systems, Inc / Taylor, Palo Alto, CA

DOT / Transp Sys Cen (Tong), Cambridge, HA

DTIC / Alexandria, VA

DTRCEN / (Code 1720), Bethesda, M

GEN MOTORS RSCH LABS / (Khalil), Warren, MI

GEORGIA INST OF TECH / Mech Engrg (Fulton), Atlanta, GA

HQ AFESC / RDC (Dr. H. Katona), Tyndall AFB, FL

LOCKHEED / Rsch Lab (B. Nour-Omid), Palo Alto, CA

LOCKHEED / Rsch Lab (M. Jacoby), Palo Alto, CA

LOCKHEED / Rsch Lab (P. Underwood), Palo Alto, CA

LOCKHEED / Rsch Lab (S. Nour-Omid), Palo Alto, CA

MARC ANALYSIS RSCH CORP / Hsu, Palo Alto, CA

MEDWADOWSKI, S. 3. / Consult Struct Engr, San Francisco, CA

NAVFACENGCOM / Code 04BZ (3. Cecilio), Alexandria, VA

NAVFACENGCON1 / Code O4BE (Hu), Alexandria, VA

NORTHWESTERN UNIV / CE Dept (Belytschko), Evanston, IL

NRL / Code 4430, Washington, DC

NSF / Struc A Bldg Systems (KP Chang), Washington, DC
NJSC DET / Code 44 (Carlsen), New London, CT

OCNR / Code lOP4 (Kostoff), Arlington, VA

OCNR / Code 1121 1EA Silva), Arlington, VA

OCNR / Code 1132SH, Arlington, VA

OHIO STATE UNTV / CE Dept (Sierakowsicl), Columbus, ON

OREGON STATE UNIV / CE Dept (Hudspeth), Corvallis, OR

OREGON STATE UNIV / CE Dept (Leonard), Corvallis, OR

OREGON STATE UNIV / CE Dept lYim), Corvallis, OR

OREGON STATE UNIV / Dept of Mech Engrg (Smith), Corvallis, OR

PORTLAND STATE UNIV / Engrg Dept (Migliori), Portland, OR

SRI INTL / Engrg Hech Dept (Grant), Menlo Parkp CA

SRI INTL / Engrg Mech Dept (Simons), Menlo Park, CA

STANFORD UNIV / App Hech Div (Hughes), Stanford, CA

STANFORD UNIV / CE Dept (Pensky), Stanford, CA

STANFORD UNIV / Div of App Mech (Simo), Stanford, CA

TRW INC / Crawford, Redondo Beach, CA

TRW INC / Dr. N. Carpenter, San Bernardino, CA

UNIV OF CALIFORNIA / CE Dept (Herrmann), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Kutter), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Romstad), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Shen), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Hilson), Berkeley, CA

UNIV OF CALIFORNIA / Ctr for Geotech Model (Idriss), Davis, CA

UNIV OF CALIFORNIA / Geotech Model Cen (Cheney), Davis, CA

UNIV OF CALIFORNIA / Nech Engrg Dept (Bayo), Santa Barbara, CA

HALEY & ALDRICH, INC. r.C. Dunn. Cambridge, MA
HAYNES & ASSOC H. Haynes, PE, Oakland, CA
HIRSCH & CO L Hirsch, San Diego, CA
Hi DEGENKOLB ASSOC W Murdough, San Francisco. CA
HOPE ARCHTS & ENGRS San Diego, CA
HUGHES AIRCRAFT CO Tech Doc Cen, El Segundo, CA
INTL MARITIME, INC D Walsh, San Pedro, CA
IRE-ITTD Input Proc Dir (R. Danford), Eagan, MN
JOHN J MC MULLEN ASSOC Library, New York. NY
LEO A DALY CO Honolulu, HI
LIN OFFSHORE ENGRG P. Chow, San Francisco CA
LINDA HALL LIBRARY Doc Dept, Kansas City. MO
MARATHON OIL CO Gamble, Houston, TX
MARITECH ENGRG Donoghue, Austin. TX
MC CLELLAND ENGRS, INC Library, Houston. TX
MOBIL R&D CORP Offshore Engrg Lib. Dallas, TX
MT DAVISSON CE, Savoy, IL
EDWARD K NODA & ASSOC Honolulu. HI
NEW ZEALAND NZ Concrete Rsch Assoc, Library. Porirua
NORTHWEST ENGRG CO Grimm, Bellevue. WA
NUHN & ASSOC A.C. Nuhn, Wayzata, NM
PACIFIC MARINE TECH (M. Wagner) Duvall. WA
PILE BUCK, INC Smoot, Jupiter, FL
PMB ENGRG Coull, San Francisco. CA
PORTLAND CEMENT ASSOC AE Fiorato. Skokie. IL
PRESNELL ASSOC, INC DG Presnell, Jr, Louisville. KY
SANDIA LABS Library, Livermore, CA
SARGENT & HERKES, INC JP Pierce, Jr. New Orleans. LA
SAUDI ARABIA King Saud Univ. Rsch Cen. Riyadh
SEATECH CORP Peroni, Miami, FL
SHELL OIL CO E Doyle, Houston, TX
SIMPSON, GUMPERTZ & HEGER. INC E Hill. CE. Arlington. MA
3M CO Tech Lib, St. Paul. MN
TRW INC Crawford, Redondo Beach. CA: Dai. San Bernardino. CA: Engr Library. Cleveland. OH: Rodgers.

Redondo Beach, CA
TUDOR ENGRG CO Ellegood, Phoenix, AZ
VSE Ocean Engrg Gp (Murton), Alexandria. VA
VULCAN IRON WORKS, INC DC Warrington, Cleveland. TN
WESTINGHOUSE ELECTRIC CORP Library, Pittsburg. PA
WISS, JANNEY, ELSTNER, & ASSOC DW Pfeifer, Northbrook. IL
WISWELL, INC G.C. Wiswell, Southport, SC
WOODWARD-CLYDE CONSULTANTS West Reg. Lib. Oakland, CA
BROWN, ROBERT University, AL
BULLOCK, TE La Canada, CA
CHAO, JC Houston, TX
CLARK, T. Redding, CA
CURTIS, C. Ventura, CA
DOBROWOLSKI, JA Alladena, CA
GIORDANO, A.J. Sewell, NJ
HARDY, S.P. San Ramon, CA
HAYNES, B. No. Stonington, CT
HEUZE, F Alamo, CA
KOSANOWSKY, S Pond Eddy, NY
NIEDORODA, AW Gainesville, FL
PETERSEN, CAPT N.W. Pleasanton, CA
QUIRK, J Panama City, FL
SMELSER, D Sevierville, TN
SPIELVOGEL, L Wyncote, PA
STEVENS, TW Dayton, OH
VAN ALLEN, B Kingston, NY

UNIV OF CALIFORNIA / Ilech Engrg Dept (Bruch), Santa Barbara, CA

UNIV OF CALIFORNItA / Mech Engrg Dept (Leckie), Santa Barbara, CA

UNIV OF CALIFOFNItA / Ilech Engrg Dept (HcHeeking), Santa Barbara, CA

UNIV OF CALIFORNJIA / Ilech Engrg Dept (Mitchell), Santa Barbara, CA

UNIV OF CALIFORNIA / (tech Engrg Dept (Tulin), Santa Barbara, CA

UNIV OF COLORADO / CE Dept (Hon-Yim 1(o), Boulder, CO

UNIV OF COLORADO / Hech Engrg Dept (Fellipe), Boulder, CO

UNIV OF COLORADO / (tech Engrg Dept (Park), Boulder, CO

UNIV OF ILLINOIS / CE Lab (Abrams), Urbana, IL

UNIV OF ILLINOIS / CE Lab (Pecknold), Urbana, IL

UNIV OF N CAROLINA / CE Dept (Gupta), Raleigh, NC

UNIV OF N CAROLINA / CE Dept ITung), Raleigh, NC

UNIV OF TEXAS / CE Dept (Stokoe), Austin, TX

UNIV OF WYOMWING / Civil Engrg Dept, Laramie, WY

WEBSTER, R / Brigham City, UTfl

WEIDLINGER ASSOC /F.S. Hong, Los Altos, CA

